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1. Introduction

In a previous Office Note (#45), an analysis was presented of
the linear computational stability criteria for explicit and
implicit integration schemes using a two-layer model in Phillips' a-
coordinate system. The purpose of the present note is to perform a
similar analysis for the case in which the vertical coordinate is
based on Shuman's definition of a, In this case, the two layers

are separated by a material surface, so that 6 vanishes identically.

2. The Linear Equations

The system of equations governing the isentropic flow of an
ideal, inviscid gas is linearized about a barotropic state of no-
motion. The Earth's rotation, sphericity and topography are neglected.
Slab-symmetry and infinite horizontal extent are assumed. The linear
equations in a generalized vertical coordinate are 

Ut+ x + x 01)Ut = iP

(P)t+ (p) ux + (Pa) = 0 (2)

c T -~(p) +c r 0, (3)cp Tt a(P)t + cp 

DT a= - -a&G =Tc (Pa?
p

a + p P + P a=O (4)

p a + ap = RT . (5)

The symbols are standard; the overbar represents basic state values,
and the unbarred variables are perturbation quantities. The sub-
scripts denote differentiation with respect to the indicated inde-
pendent variable, with the exception of the specific heat at constant
pressure, cp.



3. The Vertical
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We next introduce the definition of the vertical coordinate:

in the lower layer,

P PT = P PT

CY TT
P*P * -T P*- PT

and
in the upper domain,

T PT =Q : ; a =-PT PT :00.: 

For notational convenience,
P = P* - PT. Thus

(6)

(7)

we will define P = p* - PT' and

(Pi) = P
:

and

(P2) = PT20 T

The equations for each layer may now be written, noting that 
vanishes identically everywhere.
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Structure



+~~~ ~() + :% ~+' p~~ o (. o
U lt I l PT 0 (10)

P +P (u,: 01)t i

cp(T.)t -½ Pt - i(PT)t 0: (12)

- 1 + P P a =0 : (13)

½ Pa1 +% P + '..1 i+½ 'TF1 PT~ + =RT1 (14)

For the upper layer,

(u2)t + ½(+I)x + 2 )X+ (½ 2(PT)x = 0 (15)

P)t PT(U2)x 0 0(16)

T 2)t 2(PT)t 2 0x

- + a2 PT + pT a2 0 (1)~~2 + U2:P P :a 2 ~~~~~~(18)

p 2 + ½ a2 P T = R T (19)
T T 2

4. -The Finite Difference Equations

We next introduce explicit and implicit integration schemes.. It
should be noted that the so-called 'modified implicitt scheme of Office
Note #45 collapses to the unmodified implicit scheme here, since e
vanishes everywhere. The difference equations are, for the explicit
scheme,

un+I un-,
i 1 + (2)n + 2 i (p)n PT)n 
.2At x Tx El~~x=0
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For the implicit scheme,

un+l un-IU -U12I
.:2At

+ )n+ +( )n-I + n+ -
IX _xIx lx

--10 PTxn+I + 1 (PT)n-1 0+½ 1'2 W,(p )fl+i ±½ a(pT)~I = 0T x , II Tx

pn+l_ pn-I

2At
+ ½ F(ui)n+l + P(ui)n-i1x :, :
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Equations 51,3 - S1.5 are the same as El,3 - El,5.

un+j un- ;· ~ +C 1n2 .....
:...t ¼C21tn 26 ¼ + ( -2n-C + ¼4(¢2 )xn-

+ ¼ ~2(PT)+ + 2(PT)n 1 0 0 S2.
x.

n+l_ pn-l1 T~~~~~~~- u)xn-12; T +½ p(U )n+1+½p(u)fl1= 0 S2.2
2At T+ PU2 x T ,x

Equations S2.3 - S2.5 arethe same as E2.3 - E2.5.

5. The Characteristic Equation

We now assume solutions of the form

qn q neikx (20)

and substitute this for all dependent variables. This results in

u +½ + 1 -2+ct U6¢ P + p 0 (21)

P + P u l = 0 (22)

c T1 -2 EP a PT = 0 (23)
P 

1 + P + = 0 (24)

1~~~~~~~ 

½ P al + PT l+ ½ a P +caPT = RT C25I

U2 +½ 6 1+½ 0 5 +2 + ½- B '2 P= 0 (26)

: + P f :uT2 :=0 (27)

PT+ 3P'-T dpU2\ = 0 f f ;
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ikAt( 2+ 1)- %2_21

(28)

C29)

(30)

Kplicit

(31)

mplicit

Eqns. (21-30) can be'-reduced to two equations in P and pT by successive
substitutions. First, T and T2 are eliminated using the pairs (23, 25)
and (28, 30); this yielis

a-l(K - l)pl - P1 a = 0 (32a)

-2 ( )P2 - P2 a2 =0 (32b)(K -- R/c ),
P

Then a.1 and a2 may be eliminated between the pairs (24,32a) and (29,32b):

- P _ +a[11 + 2 6(K - 1)']P : 0

-+ 2 + q K - 2 PT

(33a)

(33b)=0

where c P* T and

* +PTNext, u and uT

P* -P
;0P* - PT

Next, u and u may be eliminated between the pairs (21,22) and (26,27):

(i 2 Pa- 6}P - 2P =0 (34a)

(1 -2 P )P "-2 PT+:l -;k2;ffi2Sp- fz =00 2i t (34b)
T. 2 T 2 
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One may then replace 1 and c as they appear in (34) from (33).
After manipulation, this yields 2

[1 r 2 RT [2 + (K-))P - 2 RT[1 + 6(K-1)])p = 0 (35a)

~~~~~~~2~~~~~(2 B2r RT2[1 + (K-1)])P - (1 -B 2RT2[1 + K + 4gr(K-l)])p = 0 (35b)

where r E E/ 2. The determinant of (35) must vanish, which leads to12
the frequency equation,

s(RT1)(RT2 )([2.+ s(K-1)][l + K + 4Er(K-1)] - 4r[1 + E(K-1)]2) 4

- (£ RT1 [2 + c(K-1)] + RT2 [1l + K + 4er(K-1)])$2 + 1 = 0 (36)

We next introduce a change of variables, z -(Bc) 2, where
c = y RT, with y= c /c . Eqn. (36) becomes a quadratic in z,p v

a e2 +b +b 1 = 0 (37a)

where

a = [y RT]2s(RT 1 )(RT2)([2 + s(K-l)][I + K + 4sr(K-!)]

- 4r[1j + (K-l)]2 ) (37b)

and

b = -[y RT]'i(E RT1 [2 + £(K-1)] + RT2[1 + K + 4rE(K-l)]). (37c)

Here T is the mean temperature of the fluid; i.e., T = ½(T1 + T2).

6. The Isothermal Atmosphere

We now seek to determine the stability criterion and the free
modes allowed in this model for a particular basic state. It will be
assumed that the basic state is isothermal at temperature T, and that
the material surface is at 500 mb:

T= T2 = T = 250K

p* = 1000 mb

PT = 500 mb
K = 2/7T
K =2/7
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From these values, we may calculate

i E = 2/3

and

r = 1/3.

The coefficients -a and b oj

roots e. of (37a) obtained.

may use the 2. to investigate
integration schemes. From the
case, we have

f (37a) may then be calculated, and the
Proceeding as in Office Note #45, we
the stability criterion for the two
definition of B for the explicit

2. 5- c2 4(kAt) 2 ~2
i=S- c ( 2_ 1)2

2
J

c2c

So that (38) becomes ...

~2_ 1 = +i(2 kAt cj)%

We may solve (40) for C to obtain

C= + i(kAt cj)+[l - (kAt c )2 ]
J

(38)

(39)

(40)

(41)

so that if (kAt c.) < 1, j0
neutral.

For the implicit case, 

- (kAt)2[ I 1J2

< 1, and the explicit method will be

c2 -: -=1
J

which yields the quadratics

c.kAt + i
=2 J
-c kAt + i

J

and

i - c.kAt
: :2 = : -

i + c kAt
J
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In both cases j12[ = 1, so that |G = 1. The implicit is therefore

unconditionally neutral. 

Finally, we may calculate the critical phase speeds c. from
(41) and the roots x. of (37a),

J ;fX X -s = 1.06 $f0(45)
(46)i2 = 5.96 (46)

The critical phase speeds are

c = 308.0 m sec - (47)

c2 = 130.1 m sec (48)

From Office Note #45, the corresponding values for the case of the
Phillips' a-coordinate are

c = 307.5 m sec-1 * (49)

c2 = 83.3 m sec (50)

The fundamental mode, represented by cl, is thus seen to be
insensitive to the presence or absence of a material surface separating
the-upper and lower layers of the fluid. However, the phase speed of
the secondary mode in the present case exceeds that of the corresponding
mode in the Phillips' coordinate case by nearly 50 m sec - . The inter--
pretation of this behavior is not completely clear, but it appears that
the secondary mode in the present case, where d vanishes at the inter-
face, is closely akin to a free-surface mode, whereas in the case of
the Phillips' o-coordinate, the secondary mode is clearly of an internal
type.

* Subsequent to the publication of Office Note #45, an arithmetical
error was discovered in the evaluation of the roots o.. The root e
(eqn. 32, p.6) should be 2.96 rather than 3.9. The coefficient of

Y RT) in eqn. 39, p.7, then becomes 0.068 rather than 0.05.
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